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Introduction 
 
This research work presents a methodology useful to evaluate the impact of the electric power 
supply on both supply chains and production plants performance. 
Since this work originates from the previous study “Logical framework of the impact of the electric 
power supply on a logistic-production system”, it uses the approximations of electric power supply 
and logistic-production systems performance defined into Deliverable 5.1. With reference to the 
electric power supply, they are electric faults and black-outs occurrence. The considered supply 
chain performance approximations are: (i) the stock-outs at the retailer stage, (ii) the backlogs at the 
supply chain nodes other than retailers, (iii) the average inventory level of the whole supply chain, 
(iv) the total transport distance covered. Finally, with reference to the production plants 
performance approximation, they are the percentages of defective parts produced as well as of on-
time delivered orders. 
Besides the electric power supply and the logistic-production system performance approximations, 
this research work derives from Deliverable 5.1. also the logical framework explaining the relations 
among the occurrence of different types of electric faults and black-outs and the performance of both 
supply chains and production plants (see the causal diagram depicted in the abovementioned 
deliverable). 
At the origin, the occurrence of black-outs is supposed to be leaded by a growth of the electricity 
prices and their volatility which in turn are triggered from a mismatch between electricity demand 
and supply. A demand/supply gap, in other terms, reveals both a market disequilibrium and a grid 
congestion. 
Here it is worth to notice that, when the supply chain is studied, a lower detail level is used. In 
particular, the different nodes the supply chain is composed of are treated as black-boxes and the 
dynamics of the nodes elements (e.g. the machines of a production plant) are neglected. As a 
consequence, on the supply chain performance only the impacts of black-outs are considered. 
The methodology proposed in this work is based on an object oriented simulation meta-model based 
in turn on Arena™ software tool. In particular, in the first section the overall architecture of the 
simulation meta-model is presented, while the second and the third sections are devoted to outline 
the main elements of the meta-model itself when the meta-model is used for studying supply chains 
and production plants respectively. Finally, the fourth section depicts the multi-step procedure 
based on a sequence of three econometric models developed to represent into the simulation meta-
model the black-outs occurrence as a function of the spot electricity price evolution (in this 
document the model developed for representing the electric faults occurrence is not presented since 
it has been illustrated in Deliverable 5.1). 
 
 

Meta-model architecture 
 
The meta-model allows to define the characteristics of the electric power supply and market as well 
as the configuration and the management policies of the logistic-production system (supply chain or 
production plant) to be studied. Then it automatically builds the corresponding Arena™ simulation 
model. Finally, through experimental campaigns the impact of electric faults and black-outs 
occurrences on the supply chain/production plant performance can be figured out.  
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The meta-model is made up from an Excel™ interface with database, a library of objects written in 
Siman™, i.e. the programming language which Arena™ refers to, and a Visual Basic™ application. 
Figure 1 shows the components of the meta-model and their interactions. 
The Excel™ interface allows the user to specify both configuration and management policies of the 
logistic-production system. In the case of a supply chain, the configuration is described by: (i) the 
number of stages of the supply chain, (ii) the number of nodes at each stage; (iii) the node type 
(manufacturer, distributor or retailer) and the corresponding capacity; (iv) the suppliers of each 
node; (v) the node-to-node distance. 
In the case of a production plant, the configuration is given by: (i) the production phases 
characterizing the system, (ii) the machines, which perform each phase; (iii) the production capacity 
of each machine; (iv) the electric faults each machine can suffer from and the corresponding inter-
arrival probability distribution (see Deliverable 5.1); (v) the machine-to-machine distances and (vi) 
the characteristics of the transportation sub-system, which links the different machines. 
Then, when a supply chain is studied, the management policy followed by each node should be 
specified because of the need to add some parameters. If the node adopts a push policy, forecasting, 
orders fulfilment and transport parameters (if applicable) are to be added. If the node adopts a pull 
policy, inventory management parameters are to be added. 
When a production plant is studied, the dispatching rule followed by each machine (i.e. the rule 
defining the sequence according to which the items seize the machine) must be defined (at the 
moment the dispatching rules considered by the simulation meta-model are the following: first in 
first out (FIFO), earliest due date (EDD), shortest processing time (SPT) and user defined priority). 
All the values entered via Excel™ interface are recorded into the Excel™ database. 
The Siman™ objects library specifically conceived for supply chains contains all the six available 
combinations of node type (manufacturer, distributor and retailer) and management policies (push 
and pull). 
 

Excel™
database

Ad hoc 
SIMAN™ 
objects
library

Access to other environments

Information flow

Excel™ interface

Visual Basic™ 
application

ARENA™ simulation 
environment

 
 

Figure 1. Simulation meta-model architecture 
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Each combination is an object. The ad hoc Siman™ production plant objects library, instead, 
contains the ‘machine’ object which a generic plant can be composed of. 
Each object is described by behaviour and data. An object behaviour is a Siman™ simulation sub-
model that operating on the object data represents how the corresponding node/machine behaves in 
the real word and how it interacts with the other nodes/machines of the supply chain/production 
plant. Object data are represented in a parametric form and consist, in the supply chain case, of the 
node typology, its position in the network, the sourcing strategy, etc.. In the production plant case, 
of  the machine code, its position in the production flows, its production capacity, etc. These data 
assume the values entered via Excel™ interface and recorded into the Excel™ database through the 
Visual Basic™ application. Such an application allows the Arena™ simulation model of the supply 
chain or production plant under study to be automatically built. From the Excel™ database the 
Visual Basic™ application reads the nodes/machines and, for each of them it: (i) selects the 
Siman™ object from the ad hoc library; (ii) selects from the Excel™ database the values to be 
assigned to the object data; (iii) makes the assignments (in other words, it generates the instance); 
(iv) inserts into the Arena™ environment the instance, that is the Siman™ sub-model representing 
the object behaviour, which operates on the parameterized object data after the assignments. Once 
the Visual Basic™ application has completed the above mentioned steps for each node/machine, 
experimental campaigns can be performed on the Arena™ model. 
In the following paragraphs more details are given with reference to the Siman™ objects and Visual 
Basic™ application in the supply chain case and in the production plant case respectively. 
 
 

Supply chains simulation meta-model 
 

Siman™ objects library 
Within the ad hoc Siman™ objects library three classes of items have been defined, that correspond 
to the three types of nodes (manufacturer, distributor and retailer). The objects belonging to each 
class are given by the combination of the node type and management policy (push and pull). For 
each of them, data and behaviours are to be specified. 
Referring to the data, which are synthesized in table 1, the manufacturer class objects, is 
characterized by: (i) the code, which univocally identifies the node within the supply chain; (ii) the 
topological parameters, i.e. the supply chain level which the node belongs to and the number of 
production resources characterizing the node as well their production rates; (iii) the common 
management parameters, i.e. the desired safety stock level and the number of transport resources as 
well their average speed; (iv) the initial values of the node inventory. 
In addition, the object manufacturer-push is characterized by the data connected to the forecasts (the 
parameter, the time bucket of the forecasting exponential smoothing method and the initial expected 
demand). In turn, the object manufacturer-pull is characterized by the data connected to the 
inventory management policy (economic order quantity and reorder point). 
With reference to the distributor class objects, the data they are characterized by are: (i) the code, 
the topological parameters, the common management parameters and the initial values of the node 
inventory, as above; (ii) the desired safety stock level and the number of transport resources as well 
their average speed, common to push and pull. In addition, the object ‘distributor-push’ is 
characterized by the data connected to the forecasts (the parameter, the time bucket of the 
forecasting exponential smoothing method and the initial expected demand). In turn, the object 
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‘distributor-pull’ is characterized by the data connected to the inventory management policy 
(economic order quantity and reorder point). 
 

Node type 
(class) 

Management policy 
(object type) Data Note 

  Code & level  
  Resources number  
 Both push and pull Production rate [units/hour]  
  Safety stock [units]  
  Average speed of transport means [km/hours]  

Manufacturer  Inventory initial value [units]  
  Alpha (α) (1) 
 Push-specific only Expected demand – initial value [units] (4) 
  Time bucket duration (T) [hours] (2) 
 Pull-specific only Economic Order Quantity (EOQ) [units]  
  Re-Order Point (ROP) [units]  
  Code & level  
  Sources (5) 
 Both push and pull Distances [km] (6) 
  Safety stock [units]  
  Speed [km/hour]  

Distributor  Inventory initial value [units]  
  Alpha (α) (1) 
 Push-specific only Expected demand – initial value [units] (4) 
  Time bucket duration (T) [hours] (2) 
 Pull-specific only Economic Order Quantity (EOQ) [units]  
  Re-Order Point (ROP) [units]  
  Code & level  
  Sources  
  Distances [km]  
 Both push and pull Safety stock [units]  
  Inventory initial value [units]  
  Average inter-arrival (INT) [hours] (7) 

Retailer  Mean (μ) [units] (8) 
  Standard deviation (σ) [units] (9) 
  Alpha (α) (1) 
 Push-specific only Expected demand – initial value [units] (4) 
  Time bucket duration (T) [hours]  
 Pull-specific only Economic Order Quantity (EOQ) [units]  
  Re-Order Point (ROP) [units]  

 
Notes: 
(1)  Parameter of the forecasting smoothing method 
(2) At the end of each time bucket a forecast for the next period must be done 
(4) It represents the demand expected by the manufacturer during the first time bucket 
(5) The list of the codes corresponding to the nodes from which the distributor can be supplied 
(6) Distances between the distributor and each source (for all the sources) 
(7) Mean of the exponential distribution from which the final customers inter-arrival time is drawn 
(8) Mean value of the normal distribution from which the quantity requested by the customer is 

drawn 
(9) Std deviation of the normal distribution from which the quantity requested by the customer is 

drawn 
 

Table 1. List of the objects data within the Siman™ library 
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With reference to the retailer class, the ‘retailer-push’ and the ‘retailer-pull’ objects are 
characterized by the same data of the ‘distributor-push’ and the ‘distributor-pull’ objects 
respectively. In addition, the objects belonging to the retailer class are characterized by the data 
connected to the final customers demand (the mean of the exponential distribution from which the 
customers inter-arrival time is drawn, and mean and standard deviation of the normal distribution 
from which the quantity requested by the single customer is drawn). 
The behaviours of the different objects are Siman™ simulation sub-models which represent how 
each node acts in the real world and how it interacts with the other nodes of the supply chain. The 
entities characterizing the sub-models corresponding to the retailer class objects are: (i) the final 
customers and (ii) the products sold by the retailer. The entities which flow along the sub-models 
corresponding to the manufacturer and the distributor classes objects are: (i) orders and (ii) 
products. The black-outs, treated in the same way described for the logistic-production systems 
case, are the entities characterizing all the sub-models. 
The Siman™ simulation sub-models representing the objects behaviours are depicted in tables 2, 3 
and 4 by means of the attributed Petri nets formalism. The Petri-nets of the object behaviour for the 
retailer-pull, distributor-push and manufacturer-pull will be described in details in tables 2, 3, 4 as 
well. The decision to depict the object behaviour only for the abovementioned instances of nodes is 
that such a sample allows for describing the behaviours characterizing all the supply chain nodes 
classes (i.e. manufacturer, distributor and retailer) as well as the two types of management policies 
considered (i.e. pull and push). 

Visual Basic™ application  
The Visual Basic™ application is described in figure 2.  
 

start

k=0
j=1

k=k+1

read data of 
node k at 

level j

select the 
corresponding 

object

parameterize 
the object 

data

insert the 
corresponding 

sub-model 

1

1

k=maxj(i)? 2

2

NO

k=0
j=j+1

YES

j=max(l)? 2
NO

YES

stop

 
Figure 2. Visual Basic application flow diagram  
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It starts by setting k = 0 and j= 1. Counter j indicates the considered supply chain level, while 
counter k addresses the considered node of the level. Then, the Visual Basic™ application 
increments the counter k, accesses the Excel™ database and reads the values of the data 
characterizing the node k at level j. 
After that, the application accesses the ad hoc Siman™ objects library, selects the object 
corresponding to the considered node, parameterizes its data according to the previously read values 
(from the Excel™ database) and it inserts the sub-model representing the object behaviour into the 
Arena™ simulation environment. At this point, the Visual Basic™ application checks if the value 
of k is equal to the maximum node code for the supply chain level j, that is it checks whether all the 
nodes belonging to the level j have been already processed. 
If not, the above described sub-procedure is performed again, starting from the k counter increment. 
If yes, k is re-initialized to 0 and the counter j is incremented. Then, the Visual Basic™ application 
checks if the value of j is equal to the supply chain farthest level from the final customer (that is if 
all the levels of the considered supply chain have been already processed). If not, the Visual 
Basic™ application re-starts from the increment of counter k; if yes, the Visual Basic™ application 
stops and the Arena™ simulation model of the considered supply chain is ready to use. 
 
 

Production plants simulation meta-model 
 

Siman™ objects library 
Within the ad hoc Siman™ objects library only one class of items has been defined: the machine. 
For such an object, data and behaviours are specified. 
Referring to the data, they are: (i) the code, which univocally identifies the machine within the 
logistic-production system; (ii) the configuration parameters, i.e. the production phase performed by 
the machine, its production capacity, the distance between the machine and the other ones; (iii) the 
probability distribution of electric faults occurrence; (iv) the probability distribution of the electric 
faults effects; (v) the probability distribution of the restoring time (depending on the electric faults 
effects); (vi) the management parameters, i.e. the applied dispatching rule (for a complete overview 
of the objects data, see table 5). 
The behaviour of the object ‘machine’ is a Siman™ simulation sub-model. As every Siman™ 
simulation model, also the considered sub-model is characterized by entities, which represent the 
elements of the real world that influence the real system functioning. The Siman™ simulation sub-
model  represents how the machine behaves in the real world, i.e. how it interacts with the other 
machines of the logistic-production system and with the entities. In particular, the entities 
characterizing the machine sub-model are: (i) the batch orders; (ii) the items each order is composed 
of; (iii) the electric faults and (iv) the black-outs. Each of these entities is characterized in turn by 
attributes according to which the low of the entity along the simulation sub-models is managed. 
With reference to the entity ‘batch order’, its attributes are: (i) the type of the product the order 
refers to; (ii) the number of items the order is composed of (batch order size); (iii) the date when the 
order has been placed; (iv) the order delivery date. 
The first two attributes of the entity ‘order’ are also attribute of the entity ‘item’. Besides them, the 
‘item’ entity is also characterized by the array ‘production route’ (i.e. the sequence of machines the 
entity must visit), by the cycle times at the different machines and, finally, by the attribute ‘defect’, 
which records if the item is defective or not. 



Manufacturer pull functioning. When there is a token in place POI-1, i.e. when an order has been placed by a node belonging to the downstream 
supply chain level, if the token attribute s is equal to i, i.e. if the order has been placed to the manufacturer under study, transition Ti,1 becomes active. It 
removes the token from POI-1 and creates one token in Pi,2, which represents the order placed at the manufacturer. Moreover, transition Ti,1 initializes to 
0 the pc attribute of such a token (this means that the order does not deal with the completion of a partial consignee) and assigns the value of the token 
attribute OQ to the variable Q. Once the token is in Pi,2, if the manufacturer inventory (given by the number of tokens held by place Pi,3) is sufficient for 
satisfying the order (i.e. if the number of tokens in Pi,3 is higher than Q) transition Ti,2 fires, otherwise (and if pc is equal to 0) transition Ti,3 is activated. 
Ti,2 removes Q tokens from Pi,3 as well the token from Pi,2 and creates one token in place Pi,4. Moreover, it assigns to the token attribute DQ the value of 
the token attribute OQ. Ti,3, instead, removes the token from Pi,2 and creates one token in place Pi,7 as well one token in Pi,2 again. It also assigns to the 
attributes DQ, pc and OQ of such tokens the values INVi, 1 and Q-INVi respectively. The token in place Pi,7 makes active transition Ti,8 that removes 
DQ tokens from place Pi,3 and creates one token in place Pi,4. When there is the token in Pi,4 and one token at least in Pi,5 (i.e. one of the distributor 
transport resources at least is available) transition Ti,5 starts to fire. It removes the token from Pi,4 and one token from Pi,5 and, after a duration given by 
the ratio between the distance of the manufacturer (node i) from the distributor who made the order (indicated by the token attribute c) and the average 
speed of the manufacturer transport resources, it creates one token in PSl-1 (i.e. in the place where the tokens representing the performed consignments 
directed towards the downstream supply chain level (l-1) are collected). Moreover, transition Ti,5 assigns to the variable rti the value of its duration d. 
Once the token is in PSl-1 and the value of its attribute s is equal to i, transition Ti,6 starts to fire and, after its duration (equal to the value of the rti 

variable), it creates one token in place Pi,5 (i.e. it makes the 
manufacturer transport resource again available). When the 
manufacturer inventory is lower than the re-order point (i.e. 
when the number of tokens in Pi,3 are less than ROPi) and the 
value of variable order_i is equal to 0 (i.e. the manufacturer 
has not already placed a new production order) transition Ti,4 
becomes active and creates one token, which represents a 
production order, in place Pi,6. Moreover, Ti,4 assigns the 
value 1 to the variable order_i and it parameterizes the token 
attributes OQ with the economic order quantity of the 
manufacturer under study (EOQi). When there is one token 
in Pi,6 and one token at least is in place Pi,7 (i.e. one of the 
manufacturer production resources at least is available), 
transition Ti,7 starts to fire. After its duration, given by the 
ratio between the quantity to be produced (OQ) and the 
production rate (pri), it assigns the value 0 to the variable 
order_i and creates OQ tokens in place Pi,3, i.e. it increases 

the manufacturer inventory level of the ordered quantity, and creates one token in place Pi,7 (i.e. it makes the manufacturer production resource again 
available). 
 

Table 2. Petri net describing the object manufacturing pull functioning behaviour 
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Distributor push functioning. When there is a token in place POI-1, i.e. when an order has been placed by a node belonging to the downstream supply 
chain level, if the token attribute s is equal to i, i.e. if the order has been placed to the distributor under study, transition Ti,1 becomes active. It removes 
the token from POI-1 and creates one token in Pi,2, which represents the order placed at the distributor. Moreover, transition Ti,1 initializes to 0 the pc 
attribute of such a token (this means that the order does not deal with the completion of a partial consignee) and assigns the value of the token attribute 
OQ to the variable Q. Once the token is in Pi,2, if the distributor inventory (given by the number of tokens held by place Pi,3) is sufficient for satisfying 
the order, i.e. if the number of tokens in Pi,3 is higher than Q, transition Ti,2 fires, otherwise (and if pc is equal to 0) transition Ti,3 is activated. Ti,2 
removes Q tokens from Pi,3 as well the token from Pi,2 and creates one token in place Pi,4. Moreover, it assigns to the token attribute DQ (which stands 
for delivered quantity) the value of the token attribute OQ and updates the value of the variable ADi (such a variable represents the actual demand, i.e. 
the sum of the retailers demands collected during the whole period t by the distributor). Ti,3, instead, removes the token from Pi,2 and creates one token in 
place Pi,7 as well as one token in Pi,2 again. It also assigns to the attributes DQ, pc and OQ of these tokens the values INVi, 1 and Q-INVi respectively. 
The token in place Pi,7 makes active transition Ti,8 that removes DQ tokens from place Pi,3 and creates one token in place Pi,4. When there is a token in Pi,4 
and one token at least in Pi,5, i.e. one of the distributor transport resources at least is available, transition Ti,5 starts to fire. It removes the token from Pi,4 
and one token from Pi,5 and, after a duration given by the ratio between the distance of the distributor (node i) from the retailer who made the order 

(indicated by the token attribute c) and the average speed of 
the distributor transport resources, it creates one token in PSl-

1, i.e. in the place where the tokens representing the 
performed consignments directed towards the downstream 
supply chain level (I-1) are collected. Moreover, transition 
Ti,5 assigns to the variable rti the value of its duration d. Once 
the token is in PSI-1 and the value of its attribute s is equal to 
i, transition Ti,6 starts to fire and, after its duration (equal to 
the value of the rti variable), it creates one token in place Pi,5, 
i.e. it makes the distributor transport resource again 
available. Finally, place Pi,6 and transition Ti,7 allow to 
represent in a push context the placing of the orders by the 
distributor. As a matter of fact, when there is the token in Pi,6 
transition Ti,7 is active. Such a transition removes the token 
from place Pi,6 and after its duration (given by the time 
bucket duration), it creates one token in place POI. Moreover, 

it parameterizes the variable EDi (the expected demand for the next period) and the token attribute OQ according to equations y and x respectively. It 
also parameterizes attributes c and s, which represent the node’s code and the source to which the node places the order, and re-initializes the variable 
ADi. 

 
 

Table 3. Petri net describing the object distributor push functioning behaviour 
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Retailer pull functioning. Place Pi,1 and transition Ti,1 allow the final customers demand to be represented. When there is one token in Pi,1 transition Ti,1 
becomes active. It cancels the token from Pi,1 and after its duration, whose value is drawn from an exponential distribution with mean INTi, it creates 
one token in Pi,1 and one token in Pi,2. The latter token represents the final customer arrived. Moreover, transition Ti,1 assigns to the attribute q of such a 
token a value drawn from a normal distribution with mean μi and variance σi (the q attribute represents the number of items required by the customer) 
and to the variable Q the value of the attribute q. Once the token is in Pi,2, if the retailer inventory (given by the number of tokens held by place Pi,3) is 
sufficient for satisfying the customer demand, i.e. if the number of tokens in Pi,3 is higher than Q, transition Ti,2 fires, otherwise transition Ti,3 is 
activated. Ti,2 removes Q tokens from Pi,3 and the token from Pi,2 and creates one token in Pi,4, which records the number of satisfied customers. Ti,3, 
instead, only removes the token from Pi,2 and creates one token in place Pi,5, which records the number of stock-outs experienced by the retailer. When 
the retailer inventory is lower than the re-order point, i.e. when the number of tokens in Pi,3 are less than ROPi, and the value of variable order_i is equal 

to 0, i.e. the retailer has not already placed a new order to the 
upstream supply chain stage. transition Ti,4 becomes active. It 
creates one token, which represents an order, in place POI, i.e. 
in the place that collects all the tokens representing orders of 
nodes belonging to the same level I. Moreover, Ti,4 assigns the 
value 1 to the variable order_i and the values of the economic 
order quantity, of the node code and of the selected source code 
to the token attributes OQ, c and s respectively. Finally, when 
there is a token in place PSI, i.e. when a consignment directed 
towards the supply chain level I has been performed, if the 
token attribute c is equal to i, i.e. if the consignment is directed 
towards the node under study, transition Ti,5 becomes active. It 

cancels the token from PSI, it assigns the value 0 to the variable order_i and it creates DQ tokens in place Pi,3, i.e. it increases the retailer inventory 
levels of the delivered quantity. 

 
 

 
Table 4. Petri net describing the object retailer pull functioning behaviour 
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Object type Data Notes 

 Code (C)  
Production phase 

 
(1) 

 Production capacity [hours] (2) 
 Distances [m] (3) 

Machine Electric faults inter-arrival times [hours] (4) 
 Probability of each inter-arrival time (5) 
 Probability of each electric fault (6) 
 Restoring times for each electric fault 

[hours] 
 

 Probability of each restoring times  
 Dispatching rule (7) 

 
Notes: 
(1)  Processing phase performed by the machine 
(2) Number of daily working hours 
(3) Distances between the machine and each machine of the logistic-production system (for all the 

machines) 
(4) They represents the different values that can be assumed by the electric faults inter-arrival time 
(5) Probability according to which the electric faults inter-arrival time can assume the abovementioned 

value (for all the values) 
(6) Popularity coefficients of the different electric faults (once an electric fault is occurred, they allow for 

defining its typology) 
(7) Such a data can assume the values: 1 (FIFO), 2 (EDD), 3 (SPT) and 4 (user defined priority) 
 

Table 5. Object data 
 
 
With reference to the entity ‘electric fault’, its attributes are: (i) the electric fault type (the values of 
this attribute is drawn from the model described into Deliverable 5.1) and (ii) the ‘idle’ attribute, 
which records if the machine is idle or not when the electric fault occurs. 
Finally, no attribute characterizes the entity ‘black-out’. Actually, a black-out does not occur 
according to a certain inter-arrival probability distribution but its occurrence depends on the 
evolution of the spot electricity price (for a deep explanation of how the flow of the ‘black-out’ 
entity along the simulation sub-models is triggered, see the section devoted to the econometric 
model). 
A synthetic overview of the entities attributes is depicted in table 6. 
The Siman™ simulation sub-model representing the object ‘machine’ behaviour is depicted in 
figure 3 by means of the attributed Petri nets formalism. In the following, the Petri nets of the object 
behaviour is described in details. 
When there is one token at least in place PC,in (i.e. when one order at least is waiting for being 
processed by the generic machine ‘C’) and there is the token in PC,1 (i.e. the generic machine ‘C’ is 
not processing any order), transition TC,1 becomes active. On the one side, it cancels the token from 
PC,1 and one token from PC,in (when there is more than one token in PC,in, the cancelled token 
depends on the machine dispatching rule). On the other side, the transition creates in PC,2 a number 
of tokens equal to the value of the attribute ‘order size’ of the token removed from PC,in. Finally, the 
transition TC,1 records on the attribute ‘t1C’ of each token the actual time ‘tnow’ (i.e. the time at 
which the order starts to be processed by the generic machine ‘C’). 
When there is one token at least in place PC,2 (i.e. when one item at least is waiting for being 
processed by the generic machine ‘C’) and there is the token in PC,3 (i.e. the generic machine ‘C’ is 
not processing any items), transition TC,2 becomes active. One token is removed from both place 
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PC,2 and PC,3 (i.e. one item seizes the generic machine ‘C’) and one token is created in PC,4 (the 
actual time ‘tnow’ is recorded on its attribute ‘t1’). 
 
 

Entity Data Notes 

Batch order Type  
Order size 

(1) 
(2) 

 Order date (3) 
 Order delivery date  

Item Type  
 Order size  
 Production route [array] (4) 
 Cycle times [array] (5) 
 Defect (6) 

Electric fault Type (7) 
 

Black-out 
Idle (8) 

(9) 
 
Notes: 
(1)  Type of the product the order refers to  
(2) Number of items the order is composed of  
(3) Date at which the order has been placed 
(4) Sequence of machine the item must visit 
(5) Item cycle time at each machine (for all the machines) 
(6) Binary attribute: its value is 1 if the item is defective, 0 otherwise 
(7) Electric fault type 
(8) Binary attribute: its value is 1 if the machine is idle when the electric fault occurs, 0 otherwise 
(9) Entity without attributes 
 

Table 6. Entities attributes 
 
 
The token in PC,4 makes active both transitions TC,3 and TC,4. The transition TC,3 represents the item 
processing by the machine. It cancels the token in PC,4 and, after a duration given by the item cycle 
time (i.e. by the value of the token attribute ‘ct’), creates one token in PC,5. The transition TC,4 
allows for representing the electric faults effects on the generic machine ‘C’ by means of the token 
it creates in place PC,6 (here it is worth to notice that transition TC,4 assigns to the attribute ‘t1’ of 
this token the actual time ‘tnow’). As a matter of fact, only when there is one token in both places 
PC,5 and PC,6, transition TC,5 is activated. 
It removes the token from the two mentioned places and, after a duration given by the expression 
‘ct-wt’ (for the meaning of the attribute ‘wt’ and the calculation of its value see in the following). 
Moreover, the transition TC,5 creates one token in PC,3 (i.e. it makes the generic machine ‘C’ 
available for being seized by another item) and another one in PC,7 and records on the ‘wC’ attribute 
of the latter token the value of the variable ‘defectC’. The value of this variable, whose definition is 
explained in the following, allows for specifying if the item produced by the generic machine ‘C’ is 
defective or not. 
Once a number of tokens equal to their ‘order size’ attribute value is in PC,7, i.e. when all the items 
of the order have been processed by the ‘C’ machine, transition TC,6 becomes active.  
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Figure 3. Petri net describing the object ‘machine’ behaviour
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It removes the ‘order size’ tokens from PC,7 and creates one token in PC,1 (i.e. allows machine ‘C’ 
for processing a new order) and another one in place PC,out. Finally, transition TC,6 assigns to the 
attribute ‘delivery time’ of the last token the actual time ‘tnow’. 
When there is a token in place PC,8 transition TC,7 starts to fire. It cancels the token from PC,8 and, 
after a duration drawn from the electric faults inter-arrival time probability distribution (for details 
see Deliverable 5.1), it creates one token in PC,8 (in this way the occurrence of the next electric fault 
on the generic machine ‘C’ can be simulated) and one token in PC,9. Moreover, it assigns to the 
attribute ‘type’ of the latter token the code representing the typology of the electric fault occurred 
(also for the popularity of each electric faults typology see Deliverable 5.1). 
Depending on the value of its attribute ‘type’, the token in place PC,9 allows for activating transition 
TC,8 or transition TC,9. The first corresponds to the electric faults, which cause defective parts and do 
not stop the production process. As a consequence, transition TC,8 cancels the token from PC,9 and 
assigns to the variable ‘defectC’ the value ‘1’. The transition TC,9 corresponds to the electric faults 
which stop the production process (for details on the electric faults typologies see Deliverable 5.1). 
This transition cancels the token from PC,9, creates on token in place PC,10 and assigns to the 
‘defectC’ variable the value given by the expression ‘2-type’. 
Depending on the status of the generic machine ‘C’, the token in PC,10 activates transition TC,10 or 
transition TC,11. In particular, if the machine is idle, i.e. there is the token in place PC,3, transition 
TC,11 fires, whereas if the machine is processing an item, i.e. there is a token in place PC,6, transition 
TC,10 becomes active. Both transitions cancel the token from PC,10, create one token in place PC,11 
and cancel the tokens from PC,6 and PC,3. Moreover, TC,10 and TC,11 assign the values ‘6’ and ‘3’ 
respectively to the attribute ‘p’ of the token created in PC,11. The attribute ‘p’ substantially records if 
the electric fault is occurred when the machine was occupied by an item, i.e. when a token was in 
place PC,6 (attribute value equal to 6), or if the electric fault is occurred when the machine was idle, 
i.e. when a token was in place PC,3 (attribute value equal to 3). Finally, TC,10 assigns to the attribute 
‘t2’ of the token created in PC,11 the actual time ‘tnow’. 
The token in PC,11, if there is one token at least in place PC,12 (i.e. at least one maintenance operator 
is available), activates transition TC,12. It cancels the tokens from PC,11 and PC,12 and, after a duration 
drawn from the restoring time probability distribution (such distribution is specified by the user via 
Excel™ interface), creates one token both in places PC,13 and in PC,12 (i.e. it makes again available 
the maintenance operator). 
The token in PC,13, depending on the value of its attribute ‘p’, activates transition TC,13 or transition 
TC,14. The transition TC,13 cancels the token from PC,13, creates one token in PC,6 and assigns to the 
attribute ‘wt’ the value ‘t2-t1’. The attribute ‘wt’ stands for ‘worked time’ and records the time 
already spent for item processing. Obviously, for completing the production process onto machine 
‘C’, the item must be worked for a number of time units given by the difference between its cycle 
time and the already spent processing time. The transition TC,14, instead, cancels the token from 
PC,13 and creates one token in PC,3 (i.e. makes the machine in the idle status again available). 
 
The black-outs occurrence is not represented by any of the places and transitions above described. 
However the Petri nets that model the machine behaviour and the black-outs occurrence are strictly 
linked. For this reason, hereinafter Petri net of the black-outs occurrence is described until it flows 
into the machine Petri net. 
When a token is in place P1 and a certain condition in the spot electricity price evolution is reached 
(for details see the section of this document devoted to the econometric model) transition T2 fires. It 
cancels the token from P1, creates one token in the place PC,10 of the generic machine Petri net and 
assigns to the attribute ‘bo’ of this token the value ‘1’ (the attribute ‘bo’ is equal to ‘1’ if a black-out 
is occurred, ‘0’ otherwise). When one token with the attribute ‘bo’ equal to ‘1’ is in the place PC,11 
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of the generic machine Petri net, the transition T3 of the black-outs occurrence Petri net starts to 
fire. It cancels the token from PC,11 and, after a duration given by the black-out duration (for details 
see the section of this document devoted to the econometric model), creates one token in P1 (in this 
way the next black-out can be simulated) and one token in the place PC,11 of the generic machine 
Petri net. 
 
 
Visual Basic™ application  
The flow diagram of the Visual Basic™ application is represented in figure 4. 
 
 

start

i=i+1

read order ‘i’

define 
production 

route order ‘i’ 

i=0

i=i+1

read ‘i’ machine 
parameters 

values

i=max(code)?

assign values 
to the 

corresponding 
object data

YESNO

i=0

assign values 
to the order 
and items 
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i=number of
orders?

NO

insert the module
for entering the 

orders

insert the 
corresponding

sub-model

stop

YES

read the values 
of the 

econometric 
model prameters

insert the module
for entering the 

black-outs

 
Figure 4. Flow diagram of the Visual Basic™ application 

 
 

The program starts by initializing the counter i to the value 0. Such a counter indicates time by time 
the order considered by the Visual Basic™ application. Then, it increments the counter i, accesses 
the Excel™ database and reads the values of the data (i.e. the product the order refers to, the order 
size, the date when the order has been placed and the order delivery date) characterizing the i-th 
order. Due to the product the order refers to, the Visual Basic™ application reads also the sequence 
of machines such a product must visit and then assigns all the read values to the corresponding 
attributes of the entity, which represent the considered order. 
At this point, the Visual Basic™ application checks if the value of i is equal to the number of orders 
recorded into the Excel™ database (i.e. if all the orders have been already processed). If not, the 
above described sub-procedure is again performed starting from the i counter increment; if yes, the 
simulation sub-model for creating orders is entered into the Arena™ environment and the counter i 
is re-initialized to 0. 
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Then, the Visual Basic™ application increments the value of counter i, accesses the Excel™ 
database and reads the values of the data characterizing the i-th machine (i.e. production capacity, 
distance from each of the other machines, restoring times as well their occurrence probabilities and 
applied dispatching rule). 
After that, the application accesses the ad hoc Siman™ objects library, selects the object ‘machine’, 
parameterizes its data according to the previously read values (from the Excel™ database) and it 
inserts the sub-model representing the object behaviour into the Arena™ simulation environment. 
At this point, the Visual Basic™ application checks if the value of i is equal to the maximum 
machine code for the considered logistic-production system (i.e. if all the machines have already 
been considered). 
If not, the above described sub-procedure is again performed starting from the i counter increment; 
if yes, the Visual Basic™ application accesses again the Excel™ database, reads the values of the 
parameters characterizing the econometric model, which is responsible for the black-outs generation 
(for details see the section of this document devoted to such econometric model), makes the 
necessary assignments and enters into the Arena™ environment the simulation sub-model for 
creating black-outs. 
At this point, the Visual Basic™ application stops and the Arena™ simulation model of the 
considered logistic-production system is completed and ready to be used. 
 
 

Econometric model 
 

The adoption of an econometric model aimed at finding (in a dynamic framework) the main 
determinants of the electricity prices behaviour and produce joint forecasts for their evolution and 
the occurrence of grid black-outs and disturbances requires to take into account six fundamental 
points arising from the analysis of the theoretical and empirical econometric literature on 
electricity prices: 
 

• The electricity market retains absolutely peculiar characteristics: it is an auction market 
that, although liberalised, is not strictly a spot one, but it requires both price and quantity of 
equilibrium to be defined one day in advance on the basis of expected supply and demand. 
This guarantees a good match among supply and demand, that, due to the non-storability of 
electricity, to unexpected peaks in demand and to congestions over the distribution 
network, could fail, causing jumps in prices and leading in extreme cases to the system 
blackout. 

• The series of electricity prices have complex statistical properties that vary depending on 
spectral frequency to which data are measured and on sample size. Depending on the cases, 
it is possible to notice phenomena of seasonality at different frequencies, trends which are 
more or less linear at low frequencies, phenomena of auto-correlated volatility at high 
frequencies, and combinations of outliers apparently managed by non standard 
distributions. 

• A wide range of models dedicated to the analysis of the properties of price series follow an 
approach that can be defined as being agnostic from the point of view of economic 
interpretation, meaning they do not foster the inference on (economic) factors that 
influence prices, but they limit the analysis to only their statistical properties. 

• However, it seems evident that the evolution of prices over time is driven by the interaction 
between supply and demand of electricity, that is, from two phenomena not directly 
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measurable and in someway latent. Therefore, in order to effectively model demand and 
supply it would be suitable to include in the model those factors that determine their trend: 
for example climatic factors or the business cycle state that affect demand; productivity, 
size of the plant and costs of production concerning supply. It is an insidious approach, as 
these determinants play a role at different frequencies and usually statistical data on them 
are characterised by significant measurement errors, which makes more difficult the correct 
identification of the effects caused by each phenomenon on prices. 

• Even for the hidden dangers previously mentioned, the econometric models dedicated to 
the analysis of electricity prices adopt very simplified specifications, often uniequational, 
taking into account only a few aspects of the issue at a time.  

• Among the models proposed by the literature, none of them seems to be characterised by a 
uniformly better capability of fitting the data and by an outperforming forecasting 
behaviour; depending on the market taken as reference, on the sample of data being 
considered and on the measure of forecasting performance chosen, now prevail very simple 
autoregressive models, whereas other times Markow switching models with changing 
regimes. 

 
The Multistep procedure 
In the light of the previous stylized issues, we consider the necessity of adopting a completely new 
methodological framework in order to efficiently specify and forecast the behaviour of electricity 
prices; an eclectic approach is needed which enables the estimate and the effective identification of 
the unobservable dynamics of electricity demand and supply, the management of extremely wide 
datasets containing high frequency data, the coexistence of short term determinants of electricity 
prices with those of long term1

This innovative methodological tool is represented by a sequence of three different models (three 
steps procedure): 

, the creation of forecasts on future trends as well as simulations of 
the impacts of structural shocks. 

 
1. A dynamic factor model (henceforth DFM). These models were introduced in the late ‘70s and 

present characteristics which are definitely appropriate for the resolution of the six problems 
highlighted in the analysis of the literature on modelling and forecasting the electricity prices. 
Within the DFM framework it is possible to: 

• Reduce the problem size by extracting from a larger database a small set of synthetic 
measures: the Factors. This is a crucial point, given that SVAR models (step 2 of this 
procedure) were born to manage small-medium groups of variables.  

• Identify, estimate and analyse properties of widespread but unobservable variables; this is 
another basic point since within an economic framework usually we have no available 
data on supply and demand. 

• Clean the data, separating measurement errors and idiosyncratic behaviours from the 
economic structural signal. 

Our DFM allows to identify and estimate, although not observable variables, two orthogonal 
factors i.e. the market electricity demand and supply that seem to be the main determinants of 
prices. 

                                                   
1 Extracting the economic signal from the noise 
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2. A Structural VAR model (henceforth FASVAR) including the electricity price series, their 
volatility, the series of grid disturbances and the demand and supply factors obtained at the 
previous step. Within the FASVAR framework it is possible to: 

• Simulate the joint behaviour of the system taking into account all the dynamic and 
instantaneous cross-correlations among the included variables. 

• Generate the Dynamic Multipliers of the system and the so-called Impulse Response 
Functions (IRF), that provide a picture of the dynamic reaction of a target variable with 
respect to a shock occurring on a trigger variable.  

In this case we are able to evaluate the existence of a significant and positive dynamic 
correlation between price peaks and grid disturbances where prices lead disturbances; 
moreover model simulation reveals a strong correlation even between price volatility and grid 
disturbances. In other terms an unbalanced gap between demand and supply triggers both some 
market turbulence inducing a price unstability and also a grid congestion. 

3. A Bayesian VAR model (henceforth BVAR) based on the same group of variables as FASVAR 
model, but estimated with Bayesian techniques. Such an approach, which is particularly useful 
for forecasting purposes, in this case has been specified on the basis of the output of steps 1 
and 2. In particular SVAR simulation has been the starting point for the calibration of the 
BVAR hyper-parameters that tune the relative strength of priors and data. Within the FASVAR 
framework it is possible to: 

• Produce (both unconditional and conditional) forecasts for all the endogenous variables 
and a measure of uncertainty around them 

Within the BVAR framework it is possible to anticipate the future occurrence of a black-out 
conditionally on a forecasted growth of prices and their volatility. 

 
In synthesis, the DFM combines the role of all the electricity price contributors in a small and 
manageable set of determinants; the SVAR model uses this synthetic information set to simulate 
existence, size and timing of the impact of a price (volatility) shock on the probability of a grid 
black-out and vice versa. Finally, the BVAR model provides joint forecasts of prices and grid 
black-outs using the first as leading (both in the logical sense and also in the timing sense) for the 
second. 
In the figure 5 the Multistep procedure flow diagram is depicted. 
 
The DFM model 
Since the end of eighties it has clearly emerged that Dynamic (common) Factors Models could 
provide a "natural" way of summarizing in a formal framework the informational content of large 
macroeconomic datasets and provide a sounder statistical basis for the construction of composite 
measures of some target phenomena. Their great advantage is to efficiently reduce the large 
dimensional problem of handling tons of variables to identify and estimate a very small number of 
components. In a sequence of cornerstone papers, Stock and Watson (1989 - SW89, 1991, 1992) 
show how to obtain through the Kalman filter the maximum likelihood estimation of the 
parameters and the factors in a DFM cast into state space form and within this framework they 
rationalize and refine the U.S. Business cycle coincident composite index produced by the 
Conference Board. 
Since SW89, a large body of literature has been developed on DFMs and focused on their 
forecasting ability (Stock and Watson 2002b), the adoption of different weighting schemes of 
variables contained in the original dataset (Stock and Watson 2002a) and different estimation 
techniques (FHLR) based on the use of the Principal Components. 
 



MANMADE                                                                                                                                   DELIVERABLE 5.4 
 

20 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Flow diagram of Multistep procedure 
 
In substance, Dynamic Factor Models (DFMs) have been developed as a powerful tool for 
exploiting the information contained in large datasets and summarizing the covariances among the 
variables contained therein. DFMs allow to describe the behaviour of each series as the sum of two 
components: the dynamics of a reduced number of common factors and an idiosyncratic shock. Let 
us collect the n variables of the dataset in the vector X_{t} and q common factors in vector ft 
    The dynamic form of a DFM may be expressed as follows (SW, 2005):          
 

     [1] 
    where n (usually large) is the number of variables in the model, q the number of dynamic, 
primitive factors, D(L) is a diagonal matrix lag polynomial D(L)=diag(δ₁(L),...,δ_{n}(L)) and 
Λ(L) has degree p-1. 

 
    Common factors (f_{t}) and idiosyncratic shocks are uncorrelated at all leads and lags. 
    Chamberlain and Rothschild (1983) make a distinction between exact and approximate DFMs; 
in the former case E(v_{it}v_{jτ})=0,∀i≠j, in the latter there exists some contemporaneous 
correlation. 
    Let us define a vector containing the so-called static factors: 

  

Model 1.  
Dynamic Factor Model 

Electricity Demand  
and supply estimation 

Model 2.  
Structural VAR Model 

Simulation of impacts of 
prices shocks on black-

outs probability 

Model 3.  
Bayesian VAR Model 

Forecasting black-outs 
probability conditionally on a 

specific prices growth  
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    The static form corresponding to the previously presented dynamic model is as follows: 

     [2] 
• r=(p×q) is the number of static factors (F_{t}). 
• Φ(L) consists of the coefficients of Γ(L) and zeros 
• If order of Γ(L) not higher than p,then Φ(L)=Φ 
• If p=1, static factors coincide with dynamic factors. 

 
    The VAR form of a DFM (FAVAR model; Bernanke, Boivin and Eliasz, 2005) might be 
obtained by substituting equation 2 of system 2 into equation 1: 
 

   [3] 
The (1,1) block of Σ_{ɛ} contains the variance and covariance matrix of the static factors which is 
a function of its dynamic counterpart Σ_{η}; matrix G relates dynamic and static factor 
innovations. Notice that: 
• the ɛ_{x,t} have factor structure 
• the ɛ_{F,t} have factor structure without idiosyncratic noise 
• rank(G)=rank(GΣ_{η}G′)=q. 
• GΣ_{η}G′ is positive semidefinite 
Inverting the system 3 and focusing on X_{t} yields its MA representation in terms of current and 
lagged orthogonal innovations η_{t} to the dynamic factors: 

 
    where: 
• B(L)=[I-D(L)L]⁻¹Λ[I-Φ(L)L]⁻¹G and u_{t}=[I-D(L)L]⁻¹ν_{t} 
• impact multipliers: B₀=ΛG, 
• long run multipliers: B(1)=[I-D(1)]⁻¹Λ[I-Φ(1)]⁻¹G 
 
Estimation may be obtained following a three step approach 
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For simplicity let us assume that we are in the condition in which the dynamics of Λ(L) is no 
higher than p (the loadings have lags which do not exceed the dynamics of dynamic factors. 
    Step 1:  Given the number of dynamic factors q, get F, Λ, D(L), by solving iteratively the 
following minimization problem: 

 
    Solution requires: 
• step 1a: F_{t} can be computed by applying static PCA to X_{t}=[I_{n}-D(L)L]X_{t} 
• step 1b: regress X_{it} on F_{t} and on X_{it-1},...,X_{it-m} to get estimate of δ_{i}(L) and 

Λ 
    Each step of this procedure reduces (does not increase) the sum of squares and the 
    procedure can be iterated to convergence. 
• step 1c: estimate the number of static factors r using Bai and NG (2002) IC criteria. 
Step 2: get Φ(L), by auxiliary regressions  
Step 3: Let us consider the simplest case when Φ(L)=Φ and D(L)=D. The VMA representation of 
the FAVAR becomes: 

 
With G in hand we can obtain the IRFs and FEVDs for structural common shocks. 
It is possible to exploit the factor structure of ɛ_{xt} in order to get estimate of G and the space 
spanned by the dynamic factor innovations η_{t}, and recover the dynamic factors. 
    Let us normalise η_{t} to have identity matrix; then we can write: 

 
    and taking trace 

 
therefore we are able to estimate G to max trace R², by computing G as the q eigenvectors 

associated to the highest q eigenvalues of . G is then normalised to generate 
orthonormal disturbances via the relation ɛ_{Ft}=Gη_{t} 
The number of dynamic factors q is estimated by applying the Bai-Ng (2002) procedure to the 
sample covariance matrix of ɛ_{xt}, yielding an estimator q. It is worth to note that this procedure 
finds the estimates of the innovations to the dynamic factors η_{t} on the basis of an arbitrary 
statistical normalization and not a theoretical structural economic model; in other words the 
impulse responses and variance decompositions delivered by the VMA representation of the DFM 
can be thought of as the factor version of impulse responses and variance decompositions with 
respect to Cholesky factorizations of conventional VAR innovations. The dynamic factor structural 
shocks ζ_{t}, that is the orthogonal shocks admitting an economic interpretation, are assumed to 
be linearly related to the reduced form dynamic factor innovations by: 
    ζ_{t}=Hη_{t} 
where H is an invertible q×q matrix and E(ζ_{t}ζ_{t}′)=I,so that HΣ_{η}H′=I.  
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In order to achieve the really structural dynamic factor shocks ζ_{t} Stock and Watson (2005) 
illustrate a set of different strategies, all based on zero restrictions on dynamic multipliers, as they 
have been proposed in the structural VAR literature. Christiano, Eichenbaum and Evans (1999) 
adopt a recursive identification scheme based on restrictions on the impact multipliers and inspire 
the Bernanke, Boivin and Eliasz (2005) FAVAR proposal, whereas Blanchard and Quah (1989) 
impose long run restrictions first used in FAVAR models by Giannone, Reichlin, and Sala (2002). 
Anyway, exclusion restrictions have been strongly criticized in the literature: Faust and Leeper 
(1997) show that small sample bias and measurement errors may induce substantial distortions in 
the estimations when using long run zero restrictions. On the other side, short run restrictions may 
be to much stringent and misleading: in many cases they are introduced not due to theoretical 
foundations but they are arbitrary imposed to respect order and rank conditions for identification. 
Moreover, Peersman (2004) shows that a large number of impulse responses based on zero 
restrictions are located in the tails of the distributions of all possible impulse responses. 
    In order to avoid technical problems of this sort in this paper we follow an identification strategy 
based on sign restrictions (Faust, 1998; Uhlig, 1999; Canova e De Nicolò, 2002): different 
dynamic factor shocks are identified according to the direction of their impact on the variables in 
the system. 
 
In details, we specifyd a DFM related to the NORDPOOL grid including data on: 
• Electricity prices (hourly sampled) 
• Price volatility (daily based) 
• Electricity Production, Consumption and Net Imports (monthly sampled) 
• Installed capacity (yearly sampled) 
• Exchange of electricity between the countries (yearly sampled) 
• Maximum system load (effective) (yearly sampled) 
• Interconnections (yearly sampled) 
• Black-out and disturbances (yearly sampled) 
Data have been collected for each one of the member countries and each kind of power, like 
Nuclear, Hydro and Thermal, for example. 
We include into the model a quite large autoregressive structure (24 lags) and we estimate and 
identify on the basis of sign restrictions two orthogonal factors representing the electricity demand 
and supply. All the usual standard test controlling for the optimal number of factors and the quality 
of estimates confirm the reliability of our results. 
 
The (Factor Augmented)SVAR Model 
At the second step of our procedure, the demand and supply Factor measures generated through 
the DFM enter a SVAR model, jointly with the series of electricity prices and the series of grid 
black-outs.  
A VAR model is a system of seemingly unrelated equations (SURE model; Zellner, (1962)) able to 
representing the whole set of dynamic correlations linking the interest variables; as a consequence 
in a VAR model all the phenomena are supposed to be jointly endogenous.  
In formal terms the VAR representation for a (n×1) vector of series yt  is as follows: 
 yt = Φ dt + A1 yt -1 + A2 yt -2 + ... + Ak yt -k + εt, εt~ VWN(0,Σ),  [4] 
where Ai are square autoregressive matrices which size is n,  whereas dt is a deterministic 
components vector.  
Equation [4] describes the evolution of each component collected in vector yt  as driven both by its 
own past behaviour and by the past behaviour of all the other endogenous in the sistem. For this 
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reason, VAR models can be viewed as the conditional reduced forms of the following structural 
model: 
 Byt = Θ dt + Γ1 yt -1 + Γ2 yt -2 + ... + Γk yt -k + υt      [5] 
where Ai=B-1×Γi e Φ=B-1×Θi e  εt=B-1×υ t 
It is worth noting that simultaneous

After having estimated a VAR model through ML estimation, one could look for some measure of 
the impact of a shock affecting one of the endogenous variables (the trigger one) onto another 
variable, the target one. This simulation step needs to move from the estimated coefficients of 
equation [4] to those of equation [5]: in other terms we have to solve an identification problem, 
switching from an unconstrained VAR to a Structural VAR approach (SVAR)

 linkages among the variables yi are hidden in the variance and 
covariance matrix of the system error terms. 

2

The ratio is to make explicit the usually hidden instantaneous correlations among the endogenous 
by imposing them a direction of causality; this is the same as to identify a set of original 
orthogonal shocks and analyse the dynamic reaction of all the system variables with respect of 
these shock. The way

.  

3
 

 is to pre-multiply equation [4] by the inverted Cholesky factor (P-1) of Σ: 

 A0
*yt = A1

*
 yt -1 + A2

*
 yt -2 + ... + Ak

*
 yt -k + et, et~ VWN(0,Ιn),  [6] 

 
where A0

*=P-1, Ai
*= P-1Ai e PP’=Σ  

A0
* is a lower triangular matrix which main diagonal elements are equal to 1 which implies a 

recursive identification scheme: orthogonal shocks on the top variables istantaneously affect the 
bottom variables and not vice versa. Identification makes it possible to simulate over the relevant 
time horizon the Impulse Response Functions4

The Factor Augmented SVAR model we specify for the NORDPOOL electricity market provides a 
quite interesting empirical evidence: there exists a significant and positive dynamic correlation 
between a price peak and grid disturbances where the first lead the second (see Figure 1). 
Moreover, model simulation reveals a strong correlation even between price volatility and black-
outs. In other terms it seems that an unbalanced gap between demand and supply generates both a 
kind of market triggers both some market turbulence inducing a price unstability and also a grid 
congestion. 

 (IRFs) that describe the shape of the dynamic 
reaction of variable j with respect to a shock occurring on variable i. 

 
Figure 6. Response of black-outs to a prices shock 

                                                   
2 For a survey: Amisano and Giannini (1997). 
3 We are referring to the exact identification case. 

4 And their confidence bounds 
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Figure 6 shows that after a positive price shock there is a significant growth of the probability of 
grid black-outs over a period of four days. Similar results are found when a volatility shock does 
occur. 
 
The forecasting Bayesian VAR model 
The last step of our procedure is developed within a Bayesian VAR framework based on the same 
group of variables as the previous FASVAR model 
One of the main drawbacks of (S)VAR models is their profligate parameterization which is 
particularly relevant whenever large systems have to be managed: too many parameters to estimate 
and an information set which is not large enough. This feature is typically reflected in a low 
efficiency level of estimates and an unsatisfactory degree of quality of the forecasts.  
Doan, Litterman e Sims (1986) overcome this problem moving to a bayesian framework: all the 
model parameters are considered as random variables and their estimation combines (in an optimal 
way) the informations coming from data (synthetized by the likelihood function of the model) with 
theoretically inspired a-priori which role is both to enlarge the available information set (higher 
efficiency) and strengthen the model fit. 
 
Let us consider the i-th VAR equation: 
 
 yit = xt’βi +εit, εit ~N(0, σ 2i)       [7] 
 
Prior informations on the parameters are collected in a system of stochastic linear constraints: 
 
 R βi= d + e0, E(e0) = 0, var(e0 e0')= Q0.     [8] 
 
Priors represent a kind of extra-sample information and could be treated as p additional 
observations in the sample; on this basis it may be derived the mixed Bayesian GLS estimator 
proposed by Theil-Goldberger:  
 ~

β i = [σ -2 X'X+ R' Q0
1− R]-1[σ -2X'y+ R' Q0

1− d], 
 var( ~

β )= [σ -2 X'X + R' Q0
1− R]-1 [9]   

As for the specification of the prior distribution we follow the so called Minnesota prior which 
features are indexed to a small set of hyperparameters calibrated in order to optimize the 
forecasting performances of the model. In particular we follow the suggestions coming from step 
two (SVAR model): the hyperparameter tuning the intensity of the link between prices and black-
outs has received a higher weight. The forecasting performance of this BVAR model has been 
measured over a five days horizon by means of the Theil’s U indexes. The evidence on prices and 
black-outs series is reported in table 7 and suggests a quite encouraging model performance: in fact 
all the Theil’s indexes are largely smaller than one. 

 
Forecasting Horizon Prices equation Black-outs equation 

1-step ahead 0.645 0.714 
2-step ahead 0.681 0.706 
3-step ahead 0.704 0.755 
4-step ahead 0.735 0.802 
5-step ahead 0.779 0.813 

 
Table 7. Theil’s indexes 
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On the basis of the previous results the BVAR model (step 3 of our procedure) seems to be a 
valuable tool for anticipating the future occurrence of a black-out (we forecast both the number of 
future black-outs and also their probability to occur) conditionally on a forecasted growth of prices 
and their volatility. 
The output of the econometric model represents the condition that triggers the black-outs 
occurrence into the objects behaviours characterizing the simulation meta-model. 
 
 

Concluding remarks 
 
This deliverable is focused on the definition of a simulation meta-model, which allows for 
automatically building logistic-production systems/supply chains simulation models for evaluating 
the impact of electric faults and black-outs on the real systems. Logistic-production systems and 
supply chain managers can benefit from this work since the presented tool provides an effective 
support for assessing the vulnerability of the plant or of the supply chain to the power supply 
quality.  
The reason for coping with this issue is twofold: first, simulation is one of the most suitable 
decision support tool for analyzing plants and supply chains; second, notwithstanding the above 
mentioned statement and the advantages, which can be easily demonstrated, in testing for instance, 
countermeasures to black-outs on a simulation model rather than in the real-life, simulation is not 
widely applied in industry. This is basically due to the fact that building a simulation model can be 
a very complex and time consuming task, which companies cannot often cope with since their 
human resources do not have the necessary competencies and/or enough time. 
The simulation meta-model developed by the research work is made up from: (i) an Excel™ 
interface, which allows the user to define the characteristics of the logistic-production system or of 
the supply chain; (ii) an ad hoc SIMAN™ objects library, which contains the objects representing 
the machines or the nodes a plant or a supply chain can be composed of; (iii) a Visual Basic™ 
application, which starting from the data entered via Excel™ interface and from the ad hoc 
SIMAN™ objects automatically builds the ARENA™ simulation model corresponding to the 
considered logistic-production system or supply chain.  
Among the information entering, as inputs, the simulation meta-model, a particular attention has 
been devoted to the specification of the probability distribution of black-outs occurrence. Its 
properties has been defined within a multi-step econometric procedure based on three models 
arranged in sequence. A Dynamic Factor Model allows to estimate the otherwise not measurable 
determinants of the electricity prices behaviour and in particular the market demand and supply. 
Demand and supply factors enter a Structural VAR model that identifies and estimates all the 
instantaneous and lagged correlations between prices (and their volatility) and black-outs. Finally, 
the set of simulated impacts of prices (volatility) on black-outs probability is the main reference in 
order to specify the prior distribution of a Bayesian forecasting VAR model: within this framework 
we forecast the probability of a black out occurrence, conditionally to a price growth. 
Then, by experimenting on such a model and measuring the output of the experimental campaign 
(basically the percentages of defective parts produced as well of on-time delivered orders (for the 
logistic-production system case) and the number of stock-outs at the retailer stage, the number of 
backlogs at the nodes belonging to the other supply chain stages, the average inventory level of the 
whole supply chain and the total distance covered by the transport resources along the supply chain 
(for the supply chain case)), the user is able to verify in advance the effects of faults and black-outs 
on the system performance. 
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A company has two main advantages, strictly connected one to the other, in using the proposed 
simulation meta-model. First, it can finally exploit simulation techniques in coping with the power 
supply issue. As a matter of fact, since through the simulation meta-model the simulation model of 
the specified plant or supply chain is automatically built, neither the human resources competencies 
nor their impossibility to spend a lot of time in building the simulation model are no more hurdles. 
Second, the use of the proposed simulation meta-model allows to dramatically reduce the time 
required to assess the system vulnerability to electric faults and black-.outs and to test potential 
countermeasures. In few minutes the user can specify the logistic-production system/supply chain 
characteristics through the Excel™ interface; immediately the Visual Basic™ application builds the 
corresponding simulation model, which anyhow can be run in few time, even if depending on the 
simulation length and on the hardware. 
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